In medical and scientific research, as outlined by the National Institute on Drug Abuse (NIDA), there are chemicals that can be used for research purposes, to develop new pharmaceutical remedies or investigate the effects of specific molecules.2 However, research chemicals used to get high are a different type of substance altogether.3 These substances are developed in a lab and frequently have mechanisms of action or effects that mimic those of other abused substances such as marijuana, opioids, or cocaine. These drugs are then sold to people with little understanding of their chemical constituents or actual effects for the mere purpose of recreational use. Although the chemicals may have once derived from legitimate chemical research, the term research chemicals is misleading and hides how dangerous these psychoactive substances can be.1
In their legitimate scientific form, research chemicals are just that—new chemicals in the research stage of development, so they come with hypotheses about their potential uses but little in terms of controlled studies and probable health risks. Chemical formulas are obtained by copying publicly published research; the structure is replicated and then mass-produced and sold, typically through online vendors.4 Some vendors are selling research chemicals on social media apps, such as Instagram and Snapchat.5
Research chemicals are commonly classified as synthetic drugs for legal and regulatory purposes. Synthetics are a broad grouping of drugs which include MDMA (ecstasy), ketamine, synthetic cathinones (bath salts), and synthetic cannabinoids (Spice and K2). Many agencies refer to these drugs as new psychoactive substances (NPS), as they are all manufactured in laboratory settings, and many of them have legal analogues that were developed specifically to bypass drug enforcement laws.1 Often, the packaging for these products has the warning label: not for human consumption.
In the US, state and federal drug laws currently outlaw specific molecules or chemical structures, but research chemical manufacturers attempt to bypass these laws by changing the structure of the drug as new laws are passed. This makes research chemicals even more unpredictable and dangerous; just because one batch led to a stimulant-like high, the next batch will not necessarily do the same thing. The United Nations Office on Drugs and Crime stated in 2018, that most NPS reported around the world were either a combination of previously reported NPS or slightly altered versions of previously reported chemicals.6 A total of 478 different NPS were identified as being on the drug market as of 2017.
A list of research chemicals will change nearly every day as new versions of chemicals are developed. A list of dangerous research chemicals (RC’s) that have been found and seized due to reported substance abuse and overdose are outlined below.
- 25I-NBOMe and 25C-NBOMe: These designer hallucinogens are taken orally and sometimes confused with LSD. Severe toxicity and deaths have been reported in connection with these substances. They are often referred to as N-bomb or Smiles.7
- 2C Series: A popular group of synthetic hallucinogens, these drugs contain 2,5-dimethyoxyphenethylamine. One of the more famous is 2C-E, also known as Europa. The drugs allegedly produce the same effects as LSD. Dangerous and unpredictable side effects include difficulty breathing and persistent, psychotic hallucinations. Drugs in the 2C series have been linked to lethal overdoses.8
- Acetyl fentanyl: With fentanyl, a potent prescription narcotic around 100 times more potent than heroin, already devastating the country, the introduction of acetyl fentanyl as a research chemical puts people struggling with opioid addiction at significant risk of death. This opioid product has been linked to fatalities, but as a research chemical, human reactions to the substance have not been exhaustively documented.9
- Arylcyclohexylamine: This group of chemicals is marketed as being similar to ketamine; they allegedly elicit dissociative, anesthetic, and hallucinogenic effects. While pharmaceutical ketamine is an arylcyclohexylamine, the group contains other, less understood research chemicals.10
- Bromo-DragonFLY: There is case report evidence to suggest that this synthetic psychedelic amphetamine derivative has led to severe toxic reactions that include agitation and seizures.11
- Etizolam: This benzodiazepine cousin is 10 times more potent than Valium, a long-acting prescription anti-anxiety medication. While etizolam is legal in India, Italy, and Japan to treat insomnia, it is not prescribed in the United States. People who struggle with benzodiazepine addiction have been known to purchase this drug through online retailers when it is marketed as a research chemical; unfortunately, the status of research chemical means that this version of etizolam has likely been tampered with, making it more dangerous. Use of the drug can lead to slurred speech, confusion, headaches, and drowsiness, among other side effects.12
- Methoxamine (MXE): This drug is a dissociative and pain suppressant, similar to ketamine; in fact, it is often sold as a ketamine derivative. MXE boasts effects like those of PCP, another dangerous synthetic psychoactive drug. The high from MXE lasts 5-7 hours. There are overdose deaths linked to this compound.13
- Methylhexanamine (DMAA): This designer stimulant is marketed as a synthetic cathinone replacement, especially after horrific reports around the dangers of bath salts. DMAA is sometimes found in the dietary supplement market for weight loss because supplements are poorly regulated in the US.14
- Other phenethylamines: Technically, phenethylaminescan be found in the body; most mammals produce these neurotransmitters, which are associated with infatuation and romance. They are stimulants, with effects like those of MDMA or amphetamines. When mixed in research chemicals, these drugs can lead to intense highs like those associated with crystal meth or ecstasy.15
- Piperazines: More commonly found in industrial chemicals, these drugs are both stimulants and hallucinogens, believed to have amphetamine-like or MDMA-like psychoactive effects. Chemicals commonly found in this group include BZP, TFMPP, mCPP, and MeOPP. They are found as tablets, which could lead to confusion with other drugs in tablet form.16
- Tryptamines: These occur naturally in some plant species, although the intoxicating version is produced in a lab. These are hallucinogens that distort reality more than other forms of hallucinogenic substances. They can be found in tablet, powder, or blotter paper form, and there are dozens of chemicals widely available from this group.17
Information on the effects of research chemicals relies on two sources: emergency department reports when a person overdoses and anecdotal evidence from those who survive the high. Of the two, overdose reports are able to provide more objective information and underscore how dangerous and hard to control these substances can be. 18
Symptoms seen in those who are admitted to the ER after ingesting research chemicals include:
- Extreme agitation.
- Anxiety and paranoia.
- Intense hallucinations.
- Psychosis.
- Seizures.
- Organ damage to liver, kidneys, lungs, etc.
- Stopped breathing.
- Lack of response, unconsciousness, or coma.
Anecdotally reported physical effects of some research chemicals, which involve a combination of stimulants, sedatives, and hallucinogens, can include:
- Dehydration.
- Nausea.
- Diarrhea.
- Pupil dilation.
- Either excitement or relaxation, unpredictably.
- Vasoconstriction, or tightening of the blood vessels related to stimulation.
- Sweating.
- Increased heart rate.
- Increased breathing rate.
- Spontaneous tactile sensations or hallucinations.
- Elevated body temperature, sometimes leading to hyperthermia.
- Liver and kidney damage from hyperthermia.
In many cases, psychological effects are the desired outcome of using these drugs. In addition to producing auditory, visual, and tactile hallucinations, effects such as derealization and time dilation can be quite dangerous for users.
Other psychological changes associated with research chemicals include:
- Violence toward others.
- Delusions.
- Confusion.
- Difficulty communicating.
- Panic.
- Disorientation.
- Paranoia.